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SUMMARY

The papers reviewed here deal with various aspects of the problem of system identification
when all the observed variables are contaminated by noise errors. Theoretical issues of
identyaility and practical methods for developing algorithms to estimate parameters of a
dynamic system are considered. The total least squares approach and the Koopmans-Levin
method are among the methods discussed. Both these methods are strongly based on matrix
singular value decomposition, which is a computationally robust numerical technique. A
book, which is a compilation of papers originating from a workshop on singular value
decomposition and signal processing is included in the references.
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1-0 IN4TA6DUCTION

R-Of System parameters using noise-corrupted data is of fundamental importance in
thle pw hO cJysteM identification. Many identification methods are based on the assumption
t0m0 t"ierls no input noise in the system. However, this is not true in most practical situations.

A tUtilechniqu, called total least squares (TLS), can be used for parameter estimation when
t*ewe In .•e on all the data, both input and output. TLS has a long history in the statis-
tica !Iteature where the method is also known as orthogonal regression or errors-in-variables
regressi. In recent years, the TLS approach has been applied in fields outside statistics.

Other methods ar also available for system identification when all observed variables are con-
tamiad by noise errors. These methods, together with the TLS approach, are discussed in
the reviev in Section 3.0.

The identiicaUon problem being considered is that of estimating the parameters in a transfer
function model of a dynamic system. This problem, given in its errors-in-variables form is

A(q-)yo(t) = B(q-1 )uo(t)

,(t) = Uo(t) + ,iu(t)

Y(t) = YO(t) + AY(t)
Here iuo(t) and y0(t) are the unmeasurable noise-free inputs and outputs, u(t) and y(t) the noisy
measured inputs and outputs while Au(t) and Ay(t) represent all stochastic disturbances to
the Inputs and outputs, respectively. A(q-1) and B(q- 1) are polynomials of order na and rb,
respectively, in the backward shift operator q- 1 and have the following form:

A(q-') = 1 + alq-' + ... + anaq-na

B(q-') = blq-' +.+bnbq-b

The backward shift operator q-1 is such that

1 (t) = y(0- )

2.0 INITIAL REVIEW OF LITERATURE SEARCHES

Several data base searches were carried out by staff of the ARL library. Preliminary study of
these literature searches identified four main groups of papers. These are:

1. Papers by B D 0 Anderson and his co-authors. Anderson is with the Department of Systems
EqgIinmdg, Australian National University.

2. Papers by S Van Huffel, J Vandewalle and others. Many of these authors are associated with
the Katholleke Universiteit Leuven.

3. Papers and a book by G H Golub and C F Van Loan. These authors are from the Departments
of Computer Scence at Stanford and Cornell Universities respectively.

4. A p&p by K V Fernando and H Nicholson. These authors are with the Department of
Costral Egineuuag, University of Sheffield.



$.0 2XVIEW OF SELECTED PAPERS

Tin papers selected for review fail into two broad categories. Papers in the first category deal
wft the problem of estimating the parameters in a transfer function model of a dynamic system.
(hik. 1, 2, 3, 4, 10 and 11). Papers in the second category are mainly concerned with the
matematical and computational aspects of the methods used for system identification. (Refs.
5, ,7, 8 and 9).

3&1 Re•iew of papers dealing with the problem of estimating the parameters in a
tramlner function model of a dynamic system

R4efreuce 11 Slderstr6m T (1981)

The purpose of this paper is to investigate when and how a dynamic system can be identified
from noine-corrupted input-output data. After brief reviews of some previous publications, the
author provides a formal statement of the identification problem under discussion and a review
of general identifiability properties.

The rest of the paper is devoted to three different methods for identifying systems from noisy
data. These methods are:

1. Spectral analysis (SA).

2. Correlation techniques (CT).

3. Joint output approach (JO).

Details of these methods and their advantages and disadvantages are discussed in the paper. The
CT method can be interpreted as an instrumental variable (IV) method using delayed inputs as
instruments.

The problem being considered is:

z(t) = G(q-1 )w(t)

u(t) = w(t) + V(t)

y(t) = z(t) + F(q-)e(t)

Here w(t) and z(t) are the unmeasurable noise-free inputs and outputs, while u(t) and y(t) are
the noisy measured inputs and outputs.

The input measurement noise, v(1), is assumed to be white and uncorrelated with the output
noise. The output noise is assumed to describe both measurement noise and process noise acting
on the system. It is assumed that the output noise can be described as F(q- )e(t) where F(q- 1)
is an asymptotically stable filter and e(t) is white noise.
hn some cases, additional assumptions or~ the input signal are used. In these cases, w(t) is

described as

w(t) = H(q-1)f(t)

where H(q-1) is an asymptotically stable filter and f(t) is white noise, uncorrelated with {e(.))
sad {1(.)). The variance matrices of e(t), f(t) and v(t) are denoted respectively by Ae, Aj and
A9.
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TO ilustrate the properties of the three methods, two numerical examples were considered.

System Si:

0.8q-1
G(q-') = 1.8-

F(q-1) = 1

H(q- - 1 - 0.5q-1

The noise variances were A. = , - A2 -1. The undisturbed signals have variances
EwQj) 2 - 1.33 and Ez(9) 2 - 25.9. Ten different realizations of 500 data pairs were generated.

System S2:

l.0q- 1 + 0.5q-2

SG(q-l) = 1 -1"hq- + 0.7q-2

F(q- 1 ) - 1

H(q_•) =
1 - 0.9q-1

The noise variances were A\2 =A = \, = 1. The undisturbed signals have variances Ew(t)2 =

5.26 and Ez(t)2 = 320.2. Ten different realizations of 200 data pairs were generated.

The numerical results support the following conclusions.

The modified spectral analysis will not always work, since estimated spectral densities are not
necessarily decomposable. The computational requirements are far higher than those for cor-
relation techniques but the accuracy (when estimates can be computed) is also considerably
better than CT. The main merits of the spectral analysis approach is to conceptually investigate
the identifiability properties. The joint output approach with a prediction error criteria requires
much computer time. The big advantage is that very accurate parameter estimates are obtained.

Reference I Fernando K V and Nicholson H (1985)

The objective of this paper is to develop the Koopmans-Levin (KL) method of identification
of linear systems using singular value decomposition (SVD). As S6derstr6m (Ref. 11) has not
considered the KL method, the results here complement his review of different methods of
identification in the presence of input and output noise.

In this paper, three algorithms have been developed for identification of univariate linear discrete-
time systems. The technique is based essentially on spectral decomposition of a covariance
matrix formed using input-output data. While it is not necessary to know the variances of the
input and output noise explicitly, it is assumed that the ratio of these variances is known.

The three algorithms are:

1. The batch or direct algorithm.

2. Sequential updating of the batch algorithmic solution. This algorithm can be used to update
the batch method when one or more new input-output data records are available.

3
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3. Soqwwtial estimation using an information matrix. This algorithm is based on an information
matrix which is defined as the inverse of the covariance matrix.
The authors have tested the batch algorithm extensively on the two numerical examples de-

scrilsed by Sderstr6m (Ref. 11). They have also tested a square-root implementation of the
lam matrix approach using the same examples.

The authors demonstrate that the accuracy of the estimates using the KL method is comparable
with that of the joint output method, and superior to the other methods described by S~lerstr6m
(Wr. 11). However, numerical requirements of the KL method are very much less than with
the joint output method.

Referenee 10 Van Huffel S and Vandewalle J (1989)

Roo. 10 considers the estimation of the parameters in a transfer function (TF) model, given in
its errors-in-variables form. i.e.

A(q-')yO(t) = B(q- 1)uo(t) (la)

u(t) = uo(t) + Au(t) (lb)

YMt = YoWt + AYMt (1c)

Here uo(t) and y0(t) are the unmeasurable noise-free inputs and outputs, u(t) and y(t) the noisy
measured inputs and outputs while Au(t) and Ay(t) represent all stochastic disturbances to
the inputs and outputs, respectively. A(q- 1) and B(q- 1) are polynomials of order na and nb,
respectively, in the backward shift operator q-1 and have the following form:

A(q- 1) = 1 + alq-1 +--...+ anaq-na (2a)

B(q-1) -- blq-1 +.. --- + bnbq-n (2b)

This paper evaluates the total least squares (TLS) approach and the instrumental variable (IV)
techniques with respect to parameter estimation in the TF model (1). The TLS technique is
compared with several IV methods for estimating the parameters in the TF model (1), given
only the normal operating input and output of the system over a limited period of time. It is
assumed that the noise sequences added to the noise-free inputs and outputs are independent,
discrete, stationary and white with zero mean and equal variance.

The authors conclude that TLS is especially useful in the estimation of the parameters of a
TF model for short sample lengths, when the outputs and possibly the inputs are disturbed by
white noise. TLS is particularly recommended when the zeros of the polynomial A(z) approach
the unit circle or when both the inputs and outputs are disturbed. In other cases, TLS and IV
methods give comparable results.

The authors suggest that the usefulness of the TLS method may be questioned for large sample
lengths when only output noise is present. The computational efficiency is then an important
factor. The TLS solution involves off-line computations. It is thus computationally not so
attractive as the IV method which exists in recursive form, allowing good on-line estimation
schemes.

The TLS method is simpler to use since the IV need not be generated. However, the TLS

method is more restrictive since the IV approach allows arbitrary noise models.

4



Rss. 5 - 8 discuss details of the total least squares problem.

Refesene 2 Anderson B D 0 (1985)
Refmrence 3 Green M and Anderson B D 0 (1986)
Refeence 4 Anderson B D 0 and Deistler M (1987)

All three papers consider errors-in-variables identification problems, which axe problems where
all observed variables are contaminated by noise errors. Given noisy measurements of an n-
vector process, these papers consider such questions as: "How many independent (possibly

near) relations exist among the non-noisy components of the process?", and "What is the set
of such linear relations for which the data are compatible?".

In the main, such questions have been posed under a collection of standing assumptions: sta-
tionarity of the underlying processes, linearity of the underlying relations, and availability of
covariance data. In Ref. 2, a dynamic problem where n = 2 is discussed. In Ref. 3, dynamic
problems, where the measured vector of dimension 2m has prescribed paxtitioning into an m-
dimensional input vector and an n-dimensional output vector, are discussed. In Ref. 4, the
authors focus on the case n = 3.

In Refs. 2 and 3, the authors hypothesize causality of a transfer function (transfer matrix in
Ref. 3) appearing in a dynamic errors-in-variable model and make certain other reasonable
assumptions. Then the concern of these two papers is show that it is possible to parameterize
the class of transfer functions (transfer matrices in Ref. 3) consistent with the available data in
a finite-dimensional way.

In Ref. 2, the author postulates the existence of three real random sequences {X4), {uk}, v k),
mutually independent and stationary, together with a time-invariant linear system defined by

a real bounded linear causal convolution operator {wk,k > 0) mapping {:x*I into a sequence
{ yp ) according to

k

=k E tV-lxj3 (3.1)
-00

The processes {lz}, {Jy} are not available for measurement, but rather one can measure for
k E (-oo, oo)

Zk = 4• + uk (3.2a)

Yk = Yk* + Vk (3.2b)

Attention is confined to Gaussian processes. The concern is not to identify a unique {wk}, but
to characterize the class of {wk) which fit the data.

The power spectrum matrix of [z y]'

att(W) 01 (W)E u1Yw Cayy(w) J
is termed the standard data.
The standing assumptions are set out below.
The random sequences {4k}, {uk) and (vk) are independent, zero mean processes of which
measurements are available according to (3.2). Further, they are regular processes, so that each
possesses a bounded spectral density.

5
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In addition, it is assumed that the T4 process is generated by

k
Tk Wk-i6l
-00

where {f} is & sero mean, stationary, white noise sequence and {i4, k> 0} is a causal impulse
rmpemm utyhs

k=O
It is also assumed that the impulse response {wk, k >_ 0} satisfies the strengthened stability

requirement

It is supposed that W(z) is the transfer function associated with the sequence {wk}, defined by

00

W(z) = Z wkzk

0

Here, z is the backward shift operator, and the standing assumptions ensure that W(z) is
analytic inside IzI < p.

The problem is to define, to the fullest extent possible, what W(z) is, under the standing

assumptions and given the standard data.

Under the standing assumptions together with the standard data, the following relationships
are derived.

arg [zy(w)]= arg[W(eJ')] = arg [y(W) (3.3a)

and

I c7W)1w <Iw(edw)I < 01(W) (3.3b)

Then the remainder of the paper is devoted to constructing W(ed'w) satisfying (3.3) and param-
eteriuing the solution set of (3.3). The key idea is to construct the magnitude of W(ejw) from
the phase, which is known from (3.3a), by using a formula from analytic function theory relating
the real and imaginary parts of analytic functions.

The information in (3.3) coupled with an assumption that W(e)') is causal determines the ¶

number of zeros of W(eWI) inside the unit circle. If there are N such zeros, the solution set is
shown to be an N + 1 parameter family. The simplest case is that of minimum phase W(z) -
those where there are no zeros inside the unit circle. In the case of minimum phase transfer

functions, the parameter is a scalar.

The work of Anderson discussed above has been extended, by Green and Anderson, to mul-
tivaa-iable errors-in-variables models in Ref. 3. In the multivariable case, it is still possible to

obtain formulas analagous to (3.3). However, there are difficulties involved in applying the scalar

"6



solution technique outlined above. The scalar technique proceeds from phase information, but

what is the phase of a matrix?

The solution technique presented in Ref. 3 is based on the factorization of matrix valued

functions, a special case of which is the better known spectral factorization. The factorization
theory is well developed and is used extensively in the theory of integral equations. A summary

of matrix factorization theory is presented in Section III of the paper. Then in Section IV, the

authors completely characterize the solution set of the multivariable errors-in-variable problem

in terms of the fdctors of the cross-spectrum matrix • (w).

In Ref. 4 the authors deal with two different, though related, problems. The first is a complex

version of a static errors-in-variables problem. This problem has been analysed in detail and a

solution has been given for the case of three scalar variables. In the second problem, the authors

have searched for causal solutions of a dynamic three variable problem. A checkable necessary

condition for a solution to exist has been exhibited, and an indication given of how a solution
might (numerically) be obtained.

3.2 Review of papers concerned with the mathematical and computational aspects

of the methods used for system identification

Reference 8 Golub G H and Van Loan C F (1980)

In this paper a singular value decomposition analysis of the total least squares (TLS) problem
is presented and an algorithm for solving the TLS problem is proposed.

Reference 5 Van Huffel S and Vandewalle J (1988)

The authors indicate that in some TLS problems, called nongeneric, the algorithm proposed by

Golub and Van Loan (Ref. 8) fails to compute a finite TLS solution. This paper generalizes their
TLS computations in order to solve these nongeneric TLS problems. An algorithm is presented
which includes the proposed generalizations.

Reference 6 Van Huffel S and Vandewalle J (1989)

Total least squares (TLS) is one method of solving overdetermined sets of linear equations
AX - B that is appropriate when there are errors in both the observation matrix B and the

data matrix A. In some linear parameter estimation problems, some of the variables may be

observed without error. This implies that some of the columns of A are assumed to be known

exactly. To deal with this case, a computationally efficient and numerically reliable Generalized
TLS algorithm GTLS, based on the Generalized SVD (GSVD), is developed.

Reference 7 Van Huffel S and Vandewalle J (1989)

This paper compares least squares (LS) and total least squares (TLS) methods for solving overde-

termined sets of linear equations, AX ; B, arising in linear parameter estimation problems.

The authors examine, via simulations, how perturbations on both the data matrix A and the
observation matrix B affect the accuracy of the TLS and LS problem.

Reference 9 Deprettere F, editor (1988)

This book owes its origins to the Workshop on SVD AND SIGNAL PROCESSING, which was

held at the Les Houches summer school for Physics, September 21-23, 1987.

A selection of papers is presented, dealing with matrix singular value decomposition, applications

of SVD in signal processing and system identification and related algorithms and implementation
architectures.

7



4.0 CONCLUDING REMARKS

The papers reviewed in Section 3.0 discuss both theoretical issues of identifiability and prac-

tical methods for system identification when all observed variables are contaminated by noise
errors. Details are provided for a number of different methods of estimating the parameters in

a transfer function model of a dynamic system. Advantages and disadvantages of each method
are discussed, and in some cases comp;,risons between methods have been carried out. Lists of
references in the papers reviewed provide further avenues for information as required.
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